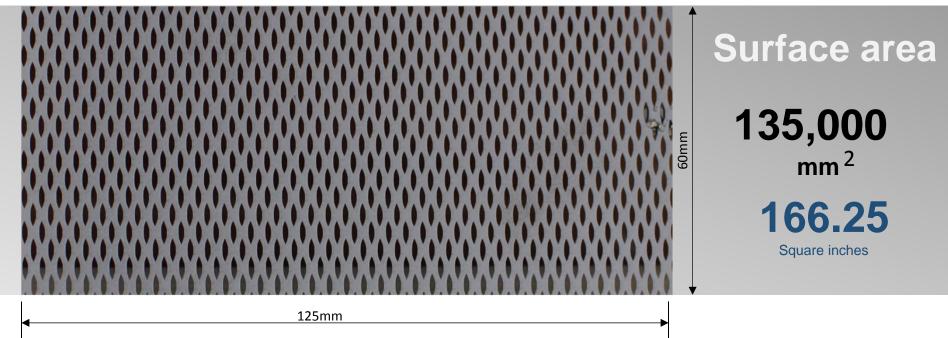


PRIME WATER PRODUCTS
7-ELECTRODES CELL FEATURES

Website: www.primewater.co.kr

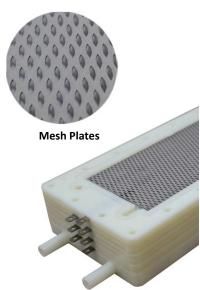
New Larger Ultra Efficient Multi-Level Electrolysis chambers

New Larger 7 Titanium/Platinum Plates


Prime Water Ionizers with Solid and Mesh plate delivers an electrical current to the water through an array of positively and negatively charged Platinum coated Titanium plates.

The more the water passes in and out of the Titanium Mesh system and the greater the electrical charge to the water (especially when powered by the newer SMPS power systems) - the higher the pH (potential of Hydrogen) and the ORP (Oxidation-Reduction Potential) of the drinking water.

A mesh plate uses the same principle as the slotted plate, but improves upon it by providing cross-channeling to more evenly direct electron flow. The applied current more evenly saturates the plate, increasing the effective delivery of electrical current to create better alteration in your water. Mesh plate technology is just like the best irrigation systems


Multi-Level

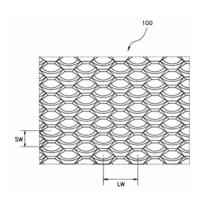
105,000mm & 162.55 square inches

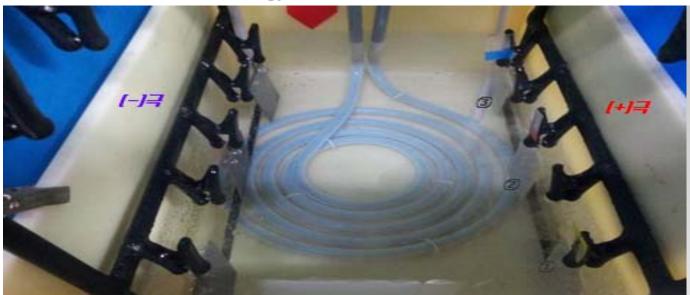
High Performance Smart & Larger Surface Area Electrode

Prime Water Ionizers have larger 7 platinum titanium electrodes. With its 7 Mesh large platinum titanium plates, it is up for the job at task producing the highest -ORP for prolongs amounts of use making it the best residential water ionizer out there.

Max Large

MESH


Platinum
Titanium Plates


Comparison of Solid Plate Electrodes and Mesh Electrodes

According to a study (Patent Publication 2003-0093171) in order for mesh titanium electrode plates to obtain an increase of 30% in active electrode area, the mesh structure should be LW0.1-2mm SW1.0-4.5mm.

The principle of edge conductivity is well known as electrons travel better and faster along edges rather than flat surface.

Mesh plate increase edge surface area, and it conducts and distributes electrons more uniformly and more efficiently rather than flat surfaces. As the entire surface area of mesh plates act as energy distribution point, there is no concentration of energy to cause burning effect or oxidative corrosion as in solid plates. Hence it is more effective in maintaining pH, ORP and activated Hydrogen. Besides, it is evident that mesh technology creates better water flow.

Prime Water Electrodes

DURABILITY

PRIME WATER ELECTRODES

Internal Durability Test Conducted

According to the analysis of the test results:

The tests were performed according to standard test methodology.

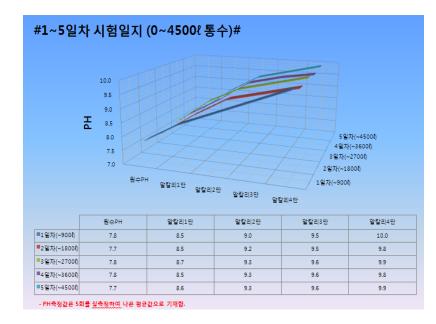
After each test was taken according to the different flow rates and comparing the analysis to a range of standards, even when not using the standard amounts, water cell life was ten years

- TEST conditions: H2SO4 0.5mol / I on the electrolyte solution 40 °C, 2A / d m² is current, 240hr electrolysis
- TEST Quantity: 3 varieties [Heat 1, Heat 2 times, Brazing products]
- TEST Date: 1/10 08:00
- TEST End Date: 20.01 08:00
- TEST progress results: 240hr after all

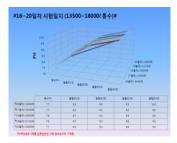
n=	1 Pt 1 =	0.22
n=	2 Pt 1 =	0.18
n=	3 Pt 1 =	0.20
n=	4 Pt 1 =	0.19
n=	5 Pt 1 =	0.14
n=	6 Pt 1 =	0.18
n=	7 Pt 1 =	0.21
n=	8 Pt 1 =	0.20
n=	9 Pt 1 =	0.21

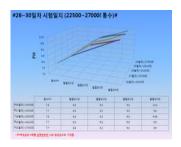
Mean Standard deviation C.O.V. (%) Range Number of readings Min. reading Max. reading Measuring time	0.190 0.024 12.85 0.08 9.0 0.14 0.14
Operatior:	20

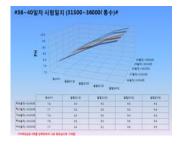
Prime Water Electrodes

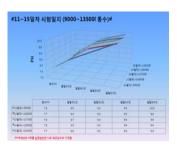

Performance

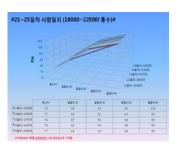
NO	Data	Descriptions	Comments
1	Product	Electrolytic Alkaline Water Generator (Prime 1301 – 13Plates)	
2	Test Period	April 11, 2014 to March 27, 2011 (40 days)	Daily Journal kept
3	Total Discharge	36,000 liters (Four people using 10 L per day on average: about 10 years worth)	Standard - 360 day year
4	Basis of usage life	About 10 years	
5	Water pressure	2.5 Kg/m²	Water pressure from unit
6	Water flow rate	2.5 l/min	Alkaline water:1.5l/min Acidic water:1.0l/min
7	This method	Every day five samples were taken to test pH and the average was taken down.	
8	This started cleaning method	The machine was used for 30 min. to produce alkaline water after which the machine went into cleaning cycle then tested.	
9	Testing machine	pH-meter Model:HM-20P Jejo Co.: TOA(Japan)	

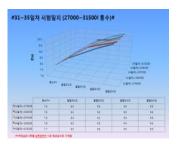



Prime Water Electrodes


Performance




Electrolytic Performance 40 days test result



Plates Sand Blasting Technology

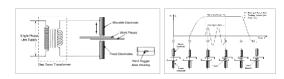
Automatic Blast Guns & Traverse Moving System

In order to improve the performance of the Anode Oxide Coating between the metal and the substrate is closely a very important factor.

Therefore, the Anode Oxide Coating system, it must be strictly the substrate pretreatment, such as degreasing, sand blasting and etching, etc.

Roughened titanium substrate including blasting and etching in two steps, wherein spray Sand is caused by Macro rough.

Generally, considered: Blasting can remove the surface oxide film of titanium, exposing fresh Surfaces; Sand rough will make the surface of the compressive stress in the state is conducive surface coating and the substrate binding.


SPOT WELDING

Spot Welding Technology

Spot Welding

In resistance spot welding, two or more sheets of metal are held between electrodes through which welding current is supplied for a defined time while force is exerted on the work pieces. The principle is illustrated in the figure on the left below.

The welding cycle starts with the upper electrode moving and contacting the work pieces resting on lower electrode which is stationary. The work pieces are held under pressure and only then heavy current is passed between the electrodes for a preset time. The area of contact between metals is raised to welding temperature due to the flow of current through the contact surfaces of the work pieces. Pressure between the two electrodes squeezes the hot metal together thus completing the weld. The weld nugget formed is allowed to cool under pressure and then pressure is released. This total cycle is known as resistance spot welding cycle and is illustrated in the figure on the right below.

PRODUCTION

Plate Production Process (1/2)

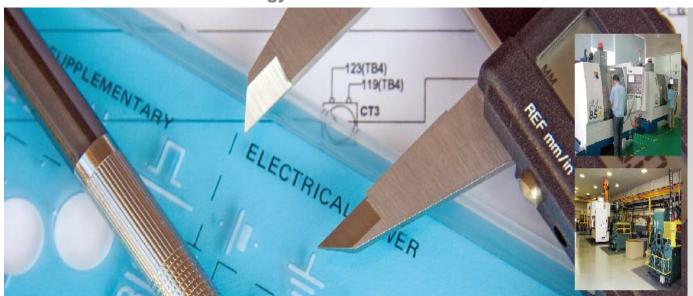
PressTitanium shape processing in the press

Electrode machiningElectrode cutting and rolling process

WashingRemoval of oil and grease from media and cut pieces

Spot WeldingWelding of the metal terminal to the electrode.

SandingSand blasting process to improve plating adhesion


Racking
Titanium electrodes loaded onto plating jig

SkimmerRemoval of any surface grease or oil

EtchingRemoval of oxidation from titanium surface

PRODUCTION

Plate Production Process (2/2)

Etching

Removal of oxidation from titanium surface

Activator

Surface of titanium activated to improve plating adhesion

Platinum Plating

Titanium plated with platinum

Drying

Water is removed from the surface of the platinum

Heat Treatment

Heat treated in furnace to strengthen adhesion of Platinum to titanium.

Shipping Inspection

Reliability and appearance Inspection / Certificate of Inspection issued

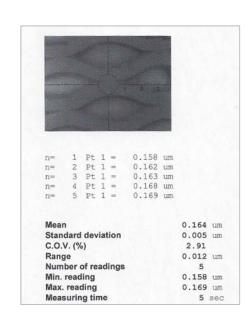
Packing/Shipping

Packing/Shipping

PLATING MEASURING

Platinum Plating Measuring Technology

Energy dispersive x-ray fluorescence analysis is a method for measuring the thickness of coatings and for analyzing materials.


It can be used for the qualitative and quantitative determination of the elemental composition of a material sample as well as for measuring coatings and coating systems. The analysis uses methods that are well established in both laboratory and industrial environments and can be readily applied using modern equipment.

Platinum plating measuring equipment offers some outstanding advantages.

It covers virtually all technically relevant elements and works non-destructively and with no contact with the sample. Measuring times range in the seconds and takes rarely longer than one minute to complete.

Measurements can be completed quickly and usually without extensive sample preparation. With our measuring equipment, it is possible to measure both thickness and chemical composition of homogeneous materials and coatings. Even traces of harmful substances can be detected in a very wide range of samples.

PURITY PLATINUM

99.99%

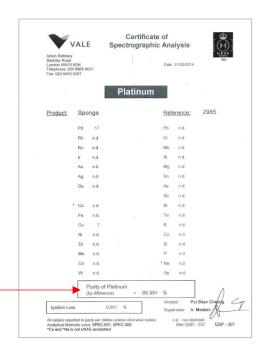
Purity of Platinum 99.99%

Platinum has great value.

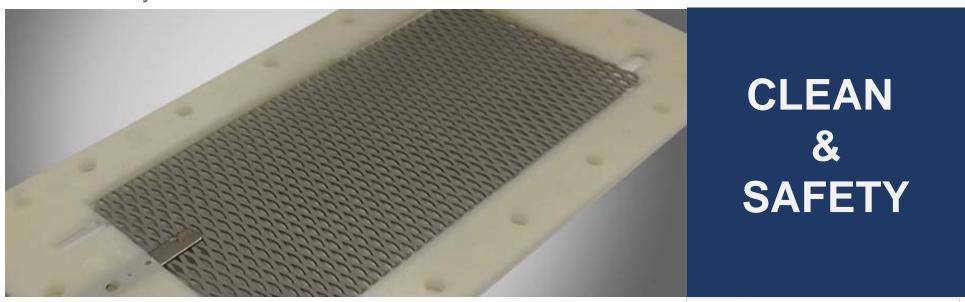
Platinum is among the finest, purest and rarest precious metals on earth.

This type of electrode is ideal for the production of chlorine because its long life, high efficiency and stability at low voltages allows it to reduce running costs.

Dimensionally stable Titanium anode are the state of art as anodes for a wide range of electrochemical applications. The excellent stability of titanium against surface and pitting corrosion make it dimensionally stable permitting dramatic


innovations in equipment design, operation conditions and energy consumptions of many electrolysis processes.

The application of coatings containing mixed metal oxides (MMO) such as RuO2, IrO2, TiO2 and Ta2O5 allows it to reduce remarkably the over potential for anodic chlorine and anodic oxygen evolution.


Additionally the excellent stability of the MMO coated titanium anode consequently do not contaminate the electrolysis system, improving the products purity and maintenance costs.

DSE (anodes) are generally used to produce chlorine in saline solution.

Purity of Platinum (by difference) = 99.99+ %

Clean & Safety Materials

Safety Platinum Titanium

Sample : Metal Specimen (Pt/Ti Plate)							
TEST RESULTS							
TEST ITEM UNIT SAMPLE RESULT TEST METHOD							
Н	%	-	0,003	KS D 2532: 2007			
0	%	-	0.06	KS D 2533: 2009			
N	%	-	0,002	KS D 2530: 2007			
С	%	-	0.02	KS D 6000: 2004			
Fe	%	-	0.04	KS D 6000 : 2004(ICP)			
Ti	%	-	remainder	KS D 6000: 2004			
Pt	%	-	0,86	KS D 6000 : 2004(ICP)			

USAGE: QUALITY CONTROL

NOTE: 1. The test results on this test report are only limited to the samples and sample names provided by the customer and KTR do not guarantee the quality of all products of the customer,

2. This test report shall not be used for public relation, advertisement, lawsuit and any other purposes outside the scope of its defined usage,

KTR(Korea Testing & Research Institute) Test Report

SGS

Issued Date: 2013, 06, 12 Page 2 of 4

: AYAA13-27633.001 Sample Description : Pt electrode Item No./Part No.

: Titanium

Test Items	Unit	Test Method	MDL	Results
Cadmium (Cd)	mg/kg	With reference to IEC 62321:2008, ICP	0.5	N.D.
Lead (Pb)	mg/kg	With reference to IEC 62321:2008, ICP	5	N.D.
Mercury (Hg)	mg/kg	With reference to IEC 62321:2008, ICP	2	N.D.
Hexavalent Chromium (Cr VI) By boiling water extraction*		With reference to IEC 62321:2008	-	Negative

Flame Retardants-PBBs/PBDEs

Test Items	Unit	Test Method	MDL	Results
Monobromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Dibromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Tribromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Tetrabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	.5	N.D.
Pentabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Hexabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Heptabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Octabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	- 5	N.D.
Nonabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Decabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Monobromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Dibromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Tribromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Tetrabromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Pentabromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Hexabromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Heptabromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Octabromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Nonabromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Decabromodiphenyl ether	mg/kg	With reference to IEC 62321:2008. GC-MS	5	N.D.

(1) N.D. = Not detected, <-MDL)
(2) mg/lg = ppm
(3) MUL = Method Detection Limit
(3) MUL = Method Detection Limit
(6) Negative = Undetectable / Positive = Detectable
(6) Negative = 4 Undetectable / Positive = Detectable
(6) ** — Qualifortieve analysis (No Unit)
(7) ** = Dolling-water-extraction:
Negative = A Science of CVP1 coating, the detected concentration in boiling-water-extraction solution in equal or greater than 652 mg/lsg with 50 mg/lsg with 50 mg/lsg water-extraction solution in equal or greater than 652 mg/lsg with 50 mg/lsg with

Clean & Safety Materials

ION EXCHANGE MEMBRANE

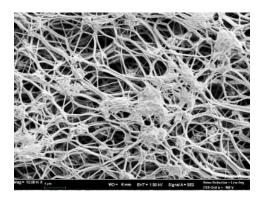
Ion Exchange Membrane

First, PTFE offers excellent chemical resistance.

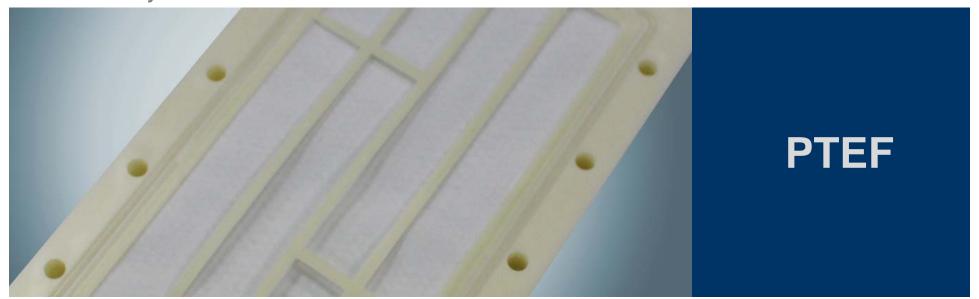
POREFLON is chemically stable and does not degrade when exposed to virtually all chemicals.

Second, POREFLON is extremely tough and thus has a long service life.

Third, POREFLON is highly permeable to water thanks to its high porosity.


The Illustration of POREFLON shows the microscopic structure of our POREFLON products.

The white area is made of PTFE fibers. The black parts represent voids, or pores.


The ratio of pore spaces to the total volume is referred to as the porosity.

Without strength limitations and other restrictions, the porosity of POREFLON can be increased up to around 90%.

A higher porosity implies less resistance to the passage of water and translates into higher water permeability.

Clean & Safety Materials

Safety Ion Exchange Membrane

Test Result(s)

PART NAME No.1

: WHITE SHEET

Test Item(s)	Unit	Method	MDL	Result
Tool nom(o)	O.I.I.C	Mietriou		No.1
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-AES.	2	n.d.
Lead (Pb)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-AES.	2	n.d.
Mercury (Hg)	mg/kg	With reference to IEC 62321-4: 2013 and performed by ICP-AES.	2	n.d.
Hexavalent Chromium Cr(VI)	mg/kg	With reference to IEC 62321: 2008 and performed by UV-VIS.	2	n.d.

SGS

Test Report No.: CE/2015/B51

D-t- - 0045/40/00

Page: 2 of 6

SUMITOMO ELECTRIC FINE POLYMER, INC. 1-950 ASASHIRONISHI KUMATORI-CHO SENNAN-GUN, OSAKA, JAPAN

Test Result(s)
PART NAME No.1

NAME No.1 : WHITE SHEET

Test Item(s)	Unit	Method	MDL	Result
	Unit			No.1
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-AES.	2	n.d.
Lead (Pb)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-AES.	2	n.d.
Mercury (Hg)	mg/kg	With reference to IEC 62321-4: 2013 and performed by ICP-AES.	2	n.d.
Hexavalent Chromium Cr(VI)	mg/kg	With reference to IEC 62321: 2008 and performed by UV-VIS.	2	n.d.
Sum of PBBs	mg/kg			n.d.
Monobromobiphenyl	mg/kg	1	5	n.d.
Dibromobiphenyl	mg/kg	1	5	n.d.
Tribromobiphenyl	mg/kg		5	n.d.
Tetrabromobiphenyl	mg/kg		5	n.d.
Pentabromobiphenyl	mg/kg		5	n.d.
lexabromobiphenyl	mg/kg	1 -	5	n.d.
-leptabromobiphenyl	mg/kg	1	5	n.d.
Octabromobiphenyl	mg/kg	1	5	n.d.
Nonabromobiphenyl	mg/kg	1	5	n.d.
Decabromobiphenyl	mg/kg	With reference to IEC 62321-6: 2015	5	n.d.
Sum of PBDEs	mg/kg	and performed by GC/MS.	-	n.d.
Monobromodiphenyl ether	mg/kg	1	5	n.d.
Dibromodiphenyl ether	mg/kg	1	5	n.d.
ribromodiphenyl ether	mg/kg	1	5	n.d.
Tetrabromodiphenyl ether	mg/kg	1 🗆	5	n.d.
entabromodiphenyl ether	mg/kg	1	5	n.d.
fexabromodiphenyl ether	mg/kg	1	5	n.d.
Heptabromodiphenyl ether	mg/kg	1 -	5	n.d.
Octabromodiphenyl ether	mg/kg	1	5	n.d.
lonabromodiphenyl ether	mg/kg	1	5	n.d.
Decabromodiphenyl ether	mg/kg	1	5	n.d.

Clean & Safety Materials

SAFETY PLASTIC

Safety Plastic Materials

Heavy Metals Unit: mg/kg

Test Items	Results	MDL	Test Method
Pb	ND	5	
Cd	ND	2	ICP/OES, IEC 62321-5:2013
Cr	ND	2	
Hg	ND	1	Direct Mercury Analyzer, IEC 62321-4:2013

Component - Plastica							E67171
LG CHEMICAL LT	D						
20 YORO-DONO, YOR	IODUNOPO-OU, SEOUL 150	721 KR					
HI121(#)							
Acrylonitrile Butadi	ene Styrene (ABS), furni	shed as pellets					
	Min This	Flame			RTI	RII	RII
Color	(mm)	Class	HM	HAI	Elec	trop	Str
ALL	1.5	HB	3	0	95	95	95
	3.0	HB	3	1	100	100	100
CC	proporative Tracking Index (C	TIE 0			Dimensio	nel Stebity (%)	0
High-Vot	tage Arc Tracking Rate (HVT	R): 2		High Vot	Low Current A	rc Resis (D495):	6
	Dielectric Strength (kV/m	m): 27			Course Resistivity	(10" ohm-cm):	15
(II) - May be fol Af3635.	Bowed by optional suffix	letter from A-Z incl.,	except F, and ex	cept Grades /	MF302G, HT700B	, XR4018, LI912	A, AF303G,
	test data does not pertain to but a materials used in the componer						
Report Date: 1978-10-1		Underseiter	n I aboratorien	herfi		37	. 71 1 us

